$\omega $-linear vector fields on manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Fields on Manifolds

where n = dim M and 6» = ith Betti number of M ( = dim of Hi(M; Q)). Thus the geometric property of M having a nonzero vector field is expressed in terms of the algebraic invariant xM. We will discuss extensions of this idea to vector ^-fields, fields of ^-planes, and foliations of manifolds. All manifolds considered will be connected, smooth and without boundary; all maps will be continuous. F...

متن کامل

Harmonic-Killing vector fields on Kähler manifolds

In a previous paper we have considered the harmonicity of local infinitesimal transformations associated to a vector field on a (pseudo)-Riemannian manifold to characterise intrinsi-cally a class of vector fields that we have called harmonic-Killing vector fields. In this paper we extend this study to other properties, such as the pluriharmonicity and the α-pluriharmonicity (α harmonic 2-form) ...

متن کامل

On Concircular and Torse-forming Vector Fields on Compact Manifolds

In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.

متن کامل

Two-dimensional global manifolds of vector fields.

We describe an efficient algorithm for computing two-dimensional stable and unstable manifolds of three-dimensional vector fields. Larger and larger pieces of a manifold are grown until a sufficiently long piece is obtained. This allows one to study manifolds geometrically and obtain important features of dynamical behavior. For illustration, we compute the stable manifold of the origin spirall...

متن کامل

Monotone and Accretive Vector Fields on Riemannian Manifolds

The relationship between monotonicity and accretivity on Riemannian manifolds is studied in this paper and both concepts are proved to be equivalent in Hadamard manifolds. As a consequence an iterative method is obtained for approximating singularities of Lipschitz continuous, strongly monotone mappings. We also establish the equivalence between the strong convexity of convex functions and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1974-0368082-2